EXAMINING HIV TRANSMISSION CLUSTERS AMONG NEWLY-DIAGNOSED ASYLUM SEEKERS IN MONTREAL, QUEBEC

Hyejin Park¹, Bluma Brenner², Joseph Cox^{1,3}, Karl Weiss⁴, Jerry Zaharatos⁴, Marina Klein^{1,3}, Sarah-Amelie Mercure⁵, Lavanya Narasiah⁵ and Nadine Kronfli^{1,3}

¹Research Institute of the McGill University Health Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada ³Division of Infectious Diseases and Chronic Viral Illness Service, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada ⁴ Division of Infectious Diseases and Medical Microbiology, Department of Medicine, IUSSS Centre-Sud-de-I Île-de-Montréal, Montréal, Quebec, Canada

Background

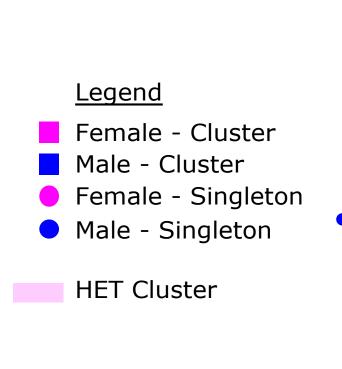
- Migrants represent an increasing proportion of people living with HIV in Canada.¹
- In recent years, Montreal has witnessed a change in its local HIV epidemiology. In 2015-2016, people from HIV-endemic countries represented 15-20% of all newly declared HIV infections, compared to 51% in 2017.²
- Asylum seekers (AS) who are newly diagnosed with HIV through the Immigration Medical Exam (performed within 30 days from arrival) represent a key population for whom there is a paucity of data regarding HIV transmission dynamics following arrival in Canada.

Objectives

- We aimed to identify and characterize HIV transmission clusters among newlydiagnosed AS (ndAS) and between ndAS and people living with HIV in Quebec.
- We aim to track linkage of viral variants with the overall goal of improved understanding of an evolving HIV epidemic among this key sub-population.

			MUHC Cohort	JGH Cohort	
			(n=83)	(n=22)	
Sex		Male	37 (44.6%)	17 (77.3%)	
		Female	46 (55.4%)	5 (22.7%)	
Country of Origin		Haiti	36 (43.4%)	12 (54.5%)	
		Nigeria	18 (21.7%)	0 (0%)	
	Central Africa	DRC	5 (6.0%)	1 (4.5%)	
		Angola	3 (3.6%)	0 (0%)	
		Cameroon	3 (3.6%)	1 (4.5%)	
		Tchad	2 (2.4%)	0 (0%)	
	East Africa	Burundi	2 (2.4%)	2 (9.1%)	
		Rwanda	1 (1.2%)	0 (0%)	
		Eritrea	2 (2.4%)	0 (0%)	
		Kenya	1 (1.2%)	0 (0%)	
		Malawi	1 (1.2%)	0 (0%)	
	North Africa	Algeria	1 (1.2%)	0 (0%)	
	South Africa	South Africa	1 (1.2%)	0 (0%)	
		Zimbabwe	1 (1.2%)	0 (0%)	
	West Africa	Cote d'Ivoire	2 (2.4%)	1 (4.5%)	
		Guinea	1 (1.2%)	1 (4.5%)	
		Тодо	1 (1.2%)	0 (0%)	
	Americas	Colombia	1 (1.2%)	0 (0%)	
		Guatemala	1 (1.2%)	0 (0%)	
		Dominican Republic	0 (0%)	1 (4.5%)	
		Mexico	0 (0%)	1 (4.5%)	
		Saint Vincent	0 (0%)	1 (4.5%)	
		Brazil	0 (0%)	1 (4.5%)	
HIV Subtype		В	37 (44.6%)	15 (68.2%)	
		С	12 (14.5%)	2 (9.1%)	
		AG	17 (20.5%)	2 (9.1%)	
		G	6 (7.2%)	0 (0%)	
		A1	2 (2.4%)	1 (4.5%)	
		AE	1 (1.2%)	0 (0%)	
		D	1 (1.2%)	1 (4.5%)	
		F1	1 (1.2%)	0 (0%)	
		CRF	6 (7.2%)	1 (4.5%)	

Table 1. Baseline participant characteristics

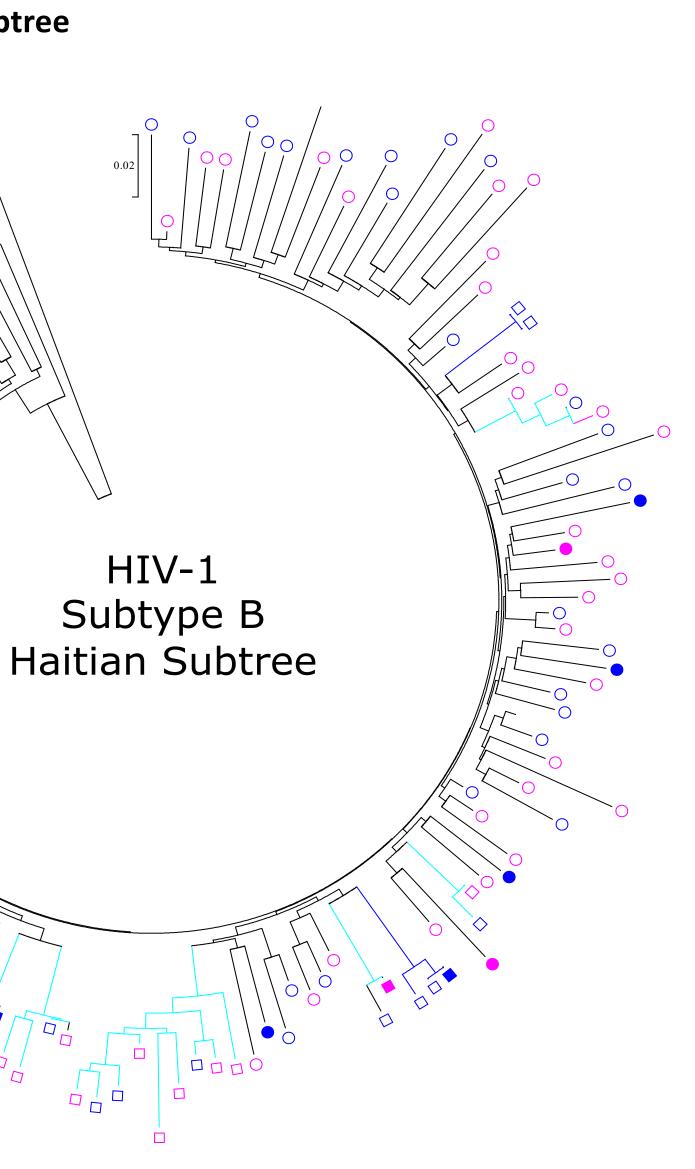

Methods

- General Hospital (JGH) were performed to obtain baseline genotypes.
- support (>98%) and short genetic distances (0.01–0.05 substitutions/site) or posterior probabilities.
- Clusters were characterized by sex, country of origin, HIV risk population and subtype, and estimated recency.

G

Figure 1. HIV-1 subtype B – Haitian origin subtree

C636


Table 2. Cluster characteristics

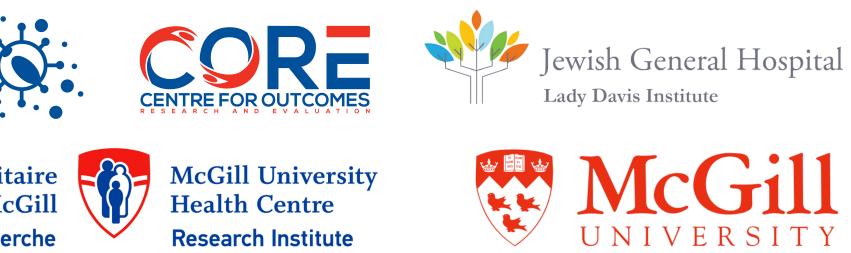
Cluster Number	Cluster Size	HIV Subtype	Country of Origin	Sex	Age	Date of Arrival into Canada	CD4 at Genotype [cells/ul]	VL at Genotype [copies/ml]
C636.01	3	В	Haiti	Μ	48	9-Aug-2017	167	32908
C636.02	3	В	Haiti	Μ	43	17-Oct-2017	347	99274
C636.03	3	В	Haiti	F	34	16-Sep-2017	687	19896
CT270.01	2	В	Haiti	Μ	40	15-Sep-2017	209	2549
CT270.02	2	В	Haiti	F	33	13-Sep-2017	191	68743
CAG41.01	2	AG	Nigeria	Μ	44	3-Dec-2017	333	181853
CAG41.02	2	AG	Nigeria	F	35	3-Dec-2017	316	11524
G5.01	2	G	Nigeria	Μ	40	18-Dec-2017	11	112947
G5.02	2	G	Nigeria	F	36	18-Dec-2017	531	40988

• Retrospective chart reviews of ndAS linked to HIV care between June 1, 2017 and December 31, 2018 at the McGill University Health Centre (MUHC) and the Jewish

• Phylogenetic trees were reconstructed using Neighbor-joining and Maximum Likelihood analysis. Clustering of linked viral sequences was based on strong bootstrap

• Cohort sequences were combined with sequences from the Quebec HIV Genotyping Program to create population-level phylogenetic trees.

Results


- Sequences were obtained from 105 ndSA; 13/105 (12%) were clustered. Haitian specific phylogenetic tree was created for HIV subtype B (Figure 1).
- Nine (9/105; 9%) individuals belonged to four clusters having no overlap with Quebec sequences (Table 2). Three were male-female clusters (each with one male and female): one Haitian subtype-B and two Nigerian clusters (subtype-G and subtype-CRF02_AG). All were known heterosexual couples. The fourth represented a Haitian subtype-B cluster with two males and one female (none of whom were known partners).
- The remaining four (4/105; 4%) individuals clustered with sequences from Quebec: two male-female clusters (one Saint Vincent subtype-B, one Haitian subtype-B) and two male-male clusters (one Haitian subtype-B, one Algerian subtype-B).
- Regardless of CD4 counts, viral loads and dates of arrival, it was not possible to determine when HIV transmission occurred.

Conclusions

- Our pilot study identified one recent HET M-M-F cluster that occurred within a specific ethno-cultural group.
- Phylogenetics cannot determine directionality of transmission.
- Our study shows that HIV clustering is occurring among ndAS and at a population level, highlighting the potential role of phylogenetic monitoring as part of routine HIV surveillance.

References

- ¹Li A. Immigrants, refugees and non-status people with HIV. Canadian AIDS Treatment • Information Exchange (CATIE) 2009.
- ² Mercure, Sarah-Amelie. Personal communication. November 28, 2018.

Centre universitaire Institut de recherche

