Is hepatitis C elimination sustainable in populations with ongoing transmission risk?

Modelling post-elimination epidemics among people who inject drugs

Godin A^{1*}, Lanièce Delaunay C¹, Cox J^{1,2}, Alary M^{3,4,5}, Kronfli N², Panagiotoglou D¹, Klein M^{2,1}, Maheu-Giroux M¹

¹McGill University, ²McGill University Health Centre, ³Université Laval, ⁴Centre de recherche du CHU de Québec, ⁵Institut national de santé publique du Québec

*Contact: arnaud.godin@mail.mcgill.ca

Conflict of Interest Disclosure: no conflicts of interest

Department of **Epidemiology, Biostatistics and Occupational Health**

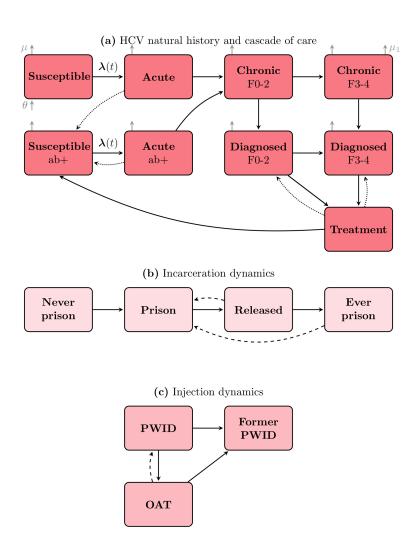
Background

International hepatitis C elimination targets:

• Reducing HCV incidence (80%) & mortality (65%) rates compared to 2015

Tools to reach elimination are at hand:

• Screening; treatment (direct-acting antivirals - DAA); and harm reduction (e.g., opioid agonist therapy - OAT & needle and syringe programs - NSP);


Little is known about the post-elimination period:

- Will incidence rebound if interventions are relaxed?
- What level of screening and treatment is needed to maintain elimination?

Aim of this study:

 Investigate transmission dynamics post-elimination among a population with ongoing transmission (people who inject drugs - PWID)

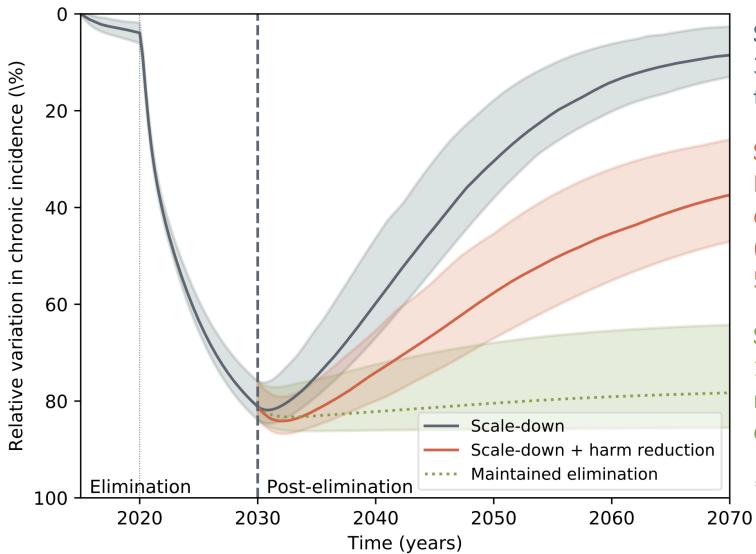
Method

Optimized HCV transmission model

Testing and treatment to reach elimination

Post-elimination period scenarios (2030-)

- 1) \downarrow Testing (1/3Y) & treatment (10/1,000 PY*)
- 2) 1) + \uparrow OAT (60%) & NSP (95%) coverage
- 3) Optimize Testing and treatment to maintain elimination post-2030


Outcomes

- Time to incidence rate rebound (90% of 2015)
- Comparison of the efforts to reach and the effort to maintain elimination

^{*}person-years

Results

Fig.1 Relative variation in HCV incidence over 2015-2070 for three scenarios

Scenario 1) (Scale down)

36 years (95%CrI* 25-51) to 90% of 2015

Scenario 2) (OAT & NSP)

Never rebounds to 90% of 2015. Takes 25 years (95%Crl: 16-36) to reach 50% of 2015

Scenario 3) (Maintained)

17% of the treatment needed to reach elimination

*CrI: Bayesian 95% credible interval

Discussion

Even with transmission risk:

- Incidence rebounds slowly; slower when ↑ OAT and NSP
- Lower effort required to sustain than to achieve elimination

Strength

Peer-reviewed and calibrated HCV model

Limitations

- Only testing and treatment rates scaled-up to reach elimination
- Co-infection with HIV not accounted for (for mortality outcome)

Important efforts to reach elimination, which could be sustained with limited testing and treatment among PWID

Funding:

