

Dual Therapy with Boosted Darunavir and Dolutegravir: A Review of the Literature

Carly Webb¹, Michelle Foisy²

1. Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta 2. Northern Alberta Program, Royal Alexandra Hospital, Edmonton, Alberta

INTRODUCTION

- Dual therapy with ritonavir- or cobicistat-boosted darunavir (bDRV) and dolutegravir (DTG) may be considered as a simplification ART strategy in cases of drug intolerance, toxicity, resistance or simplification of complex salvage regimens.
- The US DHHS guidelines recommend a bPI + an INSTI as a treatment option in certain patients with virologic failure (Level III evidence- "Expert Opinion"):1
 - Failure on NNRTI + 2 NRTIs- LPV/r + RAL or DTG + bPI
 - Failure on bPI + 2 NRTIs- use a different bPI + INSTI
 - Failure on INSTI + 2 NRTI- if resistance to RAL or EVG/c, but susceptible to DTG, use DTG BID dosing
- Proposed benefits are high barrier to resistance, potency, simple/convenient (2-3 pills once daily), well-tolerated

OBJECTIVES

 To summarize available evidence regarding the efficacy, resistance and tolerability of bDRV + DTG.

METHODS

Literature review

- Databases: Medline, Google scholar
- Recent HIV conference abstracts and posters

Search terms:

- "Dolutegravir, darunavir, dual therapy" Inclusion:
- Both observational and experimental studies
- Date range: 1946 to end of September 2019

Exclusion:

 ART regimens containing additional ARVs along with bDRV + DTG

LEGEND

ART: antiretroviral treatment ARV: antiretroviral bDRV: boosted darunavir bPI: boosted protease inhibitor BID: twice daily c/mL: copies/mL DRV/c: darunavir/cobicistat DRV/r: darunavir/ritonavir DTG: dolutegravir eGFR: estimated glomerular filtration RTC: randomized controlled trial

EVG/c: elvitegravir/cobicistat

ITT: intention to treat analysis

inhibitor

INSTI: integrase strand transfer

LPV/r: lopinavir/ritonavir NNRTI: non-nucleoside reverse transcriptase inhibitor NRTI: nucleos(t)ide reverse transcriptase inhibitor QD: once daily RAL: raltegravir RAMs: resistance associated mutations VL: viral load

RESULTS

Summary of Evidence:

Design:

- Table 1 summarizes the overall study results²⁻¹¹
- 9 observational studies^{3-7,9-11}, 1 RCT⁸

Population:

- 3 studies in suppressed patients^{2,8,10}, 7 mix of suppressed/unsuppressed^{3-7,9,11}
 - Baseline VL in unsuppressed patients often not reported
 - In 3 that reported baseline VL, average ranged from 1,259 31,623 c/mL^{3,6,7}
- Studies ranged from 13 to 263 patients (611 patients total on DTG + bDRV)
- Large variability in pre-switch regimens
- Most patients had been on multiple previous regimens
- Mean CD4 ranged 148-598 cells/mm³
- Many patients had resistance mutations, but detailed resistance information often not reported

Intervention/Control:

- Observational studies: single arm, switch (from wide variety of regimens) to DTG + bDRV
- RCT: DTG + bDRV vs. continuation of 2 NRTI + bDRV
- 3 studies used ritonavir²⁻⁴, 2 cobicistat^{5,6}, 5 mixed⁷⁻¹¹

Results:

- Follow-up ranged from 48 weeks 29 months
- Viral suppression (range of <20 to <50 copies/mL) in 86-100%
- Usually measured at week 48
- Viral failures: 0% 8%^{4,6-11}
 - Mean VL in patients with failure ranged from 79 39,200 copies/mL
- No patients reported to developed new RAMs

Adverse Effects:

- ART discontinuation due to adverse effects was 2.1% (n=13), including:
 - Neuropsychiatric effects (insomnia, headache, anxiety) (n=4)^{10,11}
- Decreased or no improvement in eGFR (n=2)^{4,6}
- Myalgias (n=1)⁴
- Other, not specified (n=6)⁸
- Non-significant increases in serum creatinine⁹⁻¹¹ and lipids⁴ reported in some studies

Table 1. Summary of Studies using bDRV + DTG as Dual Therapy.

Study	Design	Regimen	Follow-up	Results
Wheeler et al (2018) ²	Retrospective (suppressed)	DRV/r + DTG QD (n = 13)	12.8 months	Maintenance of VL <20 c/mL: 100 % (n=13/13)
Verna et al (2018) ³	Retrospective (mixed)*	DRV/r + DTG QD (n = 20)	48 weeks	VL <50 c/mL at week 48: 95% (n=19/20)
Jablonowska et al (2019) ⁴	Retrospective (mixed)*	DRV/r + DTG QD (n = 76)	48 weeks	VL <50 c/mL at week 48: 92 % (n=65/71)
de la Fuente et al (2017) ⁵	Retrospective (mixed)*	DRV/c + DTG QD (n = 44)	55 weeks	Undetectable VL at week 24 (non-treatment failure group): 93 % (n=26/28). Undetectable VL or "appropriate decline" at week 24 (treatment failure group): 100 % (n=16/16)
Lee et al (2018) ⁶	Retrospective (mixed)*	DRV/c + DTG (n = 31); QD (28), BID (3)	48 weeks	VL <50 c/mL at week 48: 89% (n=8/9)
Capetti et al (2018) ⁷	Retro-/prospective cohort (mixed)*	DRV/r then DRV/c+ DTG (n = 130); QD (113), BID (15)	107 weeks	VL <50 c/mL at week 48: 91% (n=118/130) VL <50 c/mL at week 96: 95% (n=124/130)
Spinner et al (2019) ⁸	Open-label non- inferiority RCT (suppressed)	DRV/r or DRV/c + DTG QD (n=131) vs. 2 NRTI + bDRV (n=132)	48 weeks	VL <50 c/mL at week 48: 86.3% (n=113/131) vs. 87.9% (n=116/132); difference -1.6% (95.48% CI -9.9% - +6.7%). Met non-inferiority margin (\triangle -10%)
Hawkins et al (2019) ⁹	Retrospective (mixed)*	DRV/r or DRV/c + DTG (n=65); QD (59), BID (6)	60 weeks	VL <50 c/mL, using last outcome carried forward: 94 % (n=62/65)
Navarro et al (2019)	Retrospective (suppressed)	DRV/r or DRV/c + DTG QD (n=50)	25 months	VL <50 c/mL, using last outcome carried forward: 98 % (n=49/50)
Vizcarra et al (2019) ¹¹	Prospective, single- arm, cohort (mixed)*	DRV/r or DRV/c + DTG QD (n=51)	29 months	VL <37 c/mL at week 48: 90% (ITT analysis) and 94% (per-protocol analysis)

* study involved a mix of virologically suppressed and unsuppressed patients

DISCUSSION

- Majority of studies retrospective
- Studies had small sample sizes
- Many studies did not give detailed information on:
 - Pre-switch regimens
- What actual RAMs or level of resistance patients had
- What the mean VL was at baseline in unsuppressed patients, or after treatment failure
- Significant heterogeneity in how results reported and analyzed
- Handled missing data different
- Snapshot analysis vs last outcome carried forward (or not described at all)
- Many studies did not report all data points of interest
 - Some were only conference posters or research letters, limited in what they can report

CONCLUSIONS

- Evidence on bDRV + DTG limited to 1 RCT and 9 observational studies
- Only studied in treatment experienced patients
- Was used in both virologically suppressed and unsuppressed patients
- Effective in most patients (86-100%) No reports of treatment emergent
- resistance Regimen was well tolerated with
- discontinuation rate of 2.1%
- Advantage of once daily dosing and low pill burden
- Consider this regimen as salvage therapy when NRTIs are not an option (toxicity, resistance)

REFERENCES

- 1. Adult and Adolescent ARV Guidelines (DHHS); 2019 2. Wheeler et al. Int J STD AIDS. 2018;29(5):520-522.
- 3. Verna et al. Open Forum Infect Dis. 2018;5(S1):S205-S206.
- 4. Jablonowska et al. PLOS ONE. 2019;14(1):e0210476.
- 5. de la Fuente et al. MOPEB0310. IAS (Poster); 2017. 6. Lee et al. Infect Chemother. 2018;50(3):252.
- 7. Capetti et al. HIV Clin Trials. 2018;19(6):242-248 8. Spinner et al. MOPEB269. IAS (Poster); 2019
- 9. Hawkins et al. Antivir Ther. 2019;24(7):513-519. 10. Navarro et al. Pharmacotherapy. 2019;39(4):501-507.

11. Vizcarra et al. Antivir Ther. 2019;24(6):467-471.