The CanCURE Post-mortem HIV Tissue Biobank: Working Together Towards an HIV Cure

Cecilia Costiniuk¹, Nick Bertos², Badia Issa-Chergui³, Marie-Josée Brouillette¹,⁵, Shari Margolese⁴, Ron Rosenes⁴, Nicolas Chomont⁶, Petronela Ancuta⁶, Mohammad-Ali Jenabian⁷, Jonathan Angel⁸, Mario Ostrowski⁹, Chris Power¹⁰, Jean-Pierre Routy¹, Éric A. Cohen¹¹

¹.Chronic Viral Illness Service, McGill University Health Centre, Montreal Quebec, 2.Biobanking Platform, Research Institute of the McGill University Health Centre, Montreal, Quebec, 3.Department of Anatomical Pathology, Department of Laboratory Medicine, McGill University Health Centre, Montreal, Quebec 4. CanCURE Community Advisory Board, Montreal, Quebec, 5. Maison d’Hérelle, Montreal, Quebec, 6.Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, Quebec 7.Department of Biological Sciences, Université du Québec à Montréal, Montreal, Quebec, 8.Division of Infectious Diseases, University of Ottawa, Ottawa, Ontario 9.Division of Infectious Diseases, University of Toronto, Toronto, Ontario, 10.Department of Neurology, University of Alberta, Edmonton, Alberta, 11.Institut de Recherche Clinique de Montreal, Montreal, QC, Canada and Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, Quebec

Conflict of Interest Disclosure: None
Background

• *HIV reservoirs in tissues* are established during primary infection and include peripheral blood cells as well as anatomical organs and tissues. HIV plays “hide and seek” with the immune system and antiretroviral therapy (ART). When ART is stopped, HIV rebounds.

• *Current research in humans* involving deep tissues and organs is limited as it is difficult to reach many anatomic sites safely in order to biopsy (obtain very small pieces).

• *Autopsies* are rarely performed quickly enough (*within 6 hours*). After this time the genetic material, cells and tissue degrade and cannot be accurately analyzed.
Objective

• To establish a post-mortem tissue biobank for a detailed mapping and characterization of reservoirs within anatomical sites, with a focus on CD4 T cells and macrophage infection.
 – a biobank is a secure facility to store biological specimens

Methods

• PLWH with suppressed viral load on antiretroviral therapy, able to provide informed consent and who pass away at either the Royal Victoria Hospital (Glen Site) or Maison d’Hérelle, a community house for PLWH in Montreal, are eligible to undergo rapid autopsy. Recruitment will favor individuals with known terminal illness/shorter life-expectancy (<6 months). Family/next-of-kin/power of attorney must be on-board.
• Within 6 hours of death, the body would be transferred to the MUHC Pathology suite. Small surgical incisions would be made to take small biopsies from spleen, liver, lungs, lymph nodes, heart, aorta, gut, bone marrow and ovaries or testes/urethra and brain. Afterwards, incisions would be re-sewn, and the body would be sent to the facility of the person’s wish for burial or cremation.

• Applications will include immunophenotyping by flow cytometry and immunohistochemistry as well as characterization of HIV reservoirs (quantifications by qPCR or DNA/RNA scope and HIV genotyping).
 – This will allow mapping of HIV within various organs
Project status

• Informed consent was written with input of a CanCURE Community Advisory Board member.

• A community event about the biobank was held after the CanCURE Annual General Meeting in November 2019 to obtain feedback relating to rapid autopsy and biobanking procedures.

• Protocol has been approved by the Research Ethics Board of the McGill University Health Centre

• Concurrent study is ongoing to assess perspectives of people living with HIV. Findings will provide guidance for approaching, including, and interacting with participants in the CanCURE HIV Autopsy Biobank and other end-of-life HIV cure studies.

• Contact: Dr Cecilia Costiniuk at cecilia.costiniuk@mcgill.ca