Daily Immunological/Virological Variations in Aviremic ART-treated HIV Participants

Debashree Chatterjee¹, Tomas Raul Wiche Salinas¹, Yuwei Zhang¹, Delphine Planas¹, Amelie Cattin¹, Augustine Fert¹, Etiene Moreira Gabriel¹, Laurence Raymond Marchand², Josee Girouard², Nicolas Cermakian³, Daniel E. Kaufmann⁴, Jean-Pierre Routy⁴, Petronela Ancuta⁵

¹Université de Montréal, Montreal, QC, Canada, ²McGill University Health Centre Research Institute, Montreal, QC, Canada, ³McGill University, Montreal, QC, Canada, ⁴McGill University Health Centre, Glen site, Montreal, QC, Canada, ⁵Centre de Recherche du CHUM, Montreal, QC, Canada

BACKGROUND

Biological functions fluctuate in a circadian manner to align with environmental changes. In healthy uninfected individuals, variations in T-cell trafficking are documented in the blood, with nadir CD4 counts in the morning. Daily variations are also observed for plasma cortisol and melatonin, two regulators of immune functions. HIV infection is associated with pronounced alterations in CD4 T-cell homeostasis and chronic immune activation. HIV transcription is regulated by BMAL1, a circadian clock master regulator. However, daily variations in immunological/virological parameters during ART-treated HIV infection remain unknown.

METHODS

ART-treated people living with HIV (PLWH; median CD4 counts: 606 cells/ml; age: 57 years; time since infection: 242 months; aviremia under ART: 216 months) were hospitalized at the CRCHUM Phase I Clinic a Friday afternoon for 40 hours. Starting the next morning, blood was collected/processed every 4 hours for 24 hours before food intake. Polychromatic flow cytometry allowed cell counting/phenotypic analysis on fresh blood. Plasma levels of cortisol/melatonin and markers of mucosal barrier impairment (FABP2, LBP) were measured by ELISA. PBMC were frozen. HIV DNA/RNA were quantified by PCR on sorted CD4+ T-cells.

RESULTS

Study cohort I clinical parameters

<table>
<thead>
<tr>
<th>Group</th>
<th>Sex</th>
<th>Age (years)</th>
<th>CD4 T cell count</th>
<th>CD8 T cell count</th>
<th>Plasma cortisol</th>
<th>Time since infection</th>
<th>Time since ART initiation</th>
</tr>
</thead>
</table>

Experiment protocol

Wake 10:00 Dim Light Sleep 22:00

Blood Sampling

1. Plasma soluble factor quantification
2. PBMC immunological/virological measurements

Circadian Variations in Plasma Markers

CONCLUSIONS

Daily variations in the blood T-cell/myeloid compartments, mucosal permeability markers, HIV transcription, and melatonin/cortisol levels, were observed in a cohort of aviremic ART-treated PLWH. These findings provide a rationale for studying the role of the circadian clock machinery in regulating residual HIV transcription under ART.

Acknowledgement

The authors thank Dr. Dominique Gauchat for the expert technical support in FACS analysis (the CHUM Research Centre FACS Core Facility, Mario Legault HIV/AIDS and Infectious Diseases Network of the Fonds de Recherche Québec-Santé (FRQ-S)) for their help with ethical approvals and informed consents. We thank Josee Girouard, Angie Massicotte and Maria Forcácio (McGill University Health Centre, Glen) and Lucie Fuzneau (CRCHUM Phase I Clinical Research Unit) for their involvement in patient recruitment, follow-up during hospitalization and blood collection. We finally acknowledge the major contribution to this work of all human donors via their gift of blood samples. This study was funded by the Canadian Institutes of Health Research (CIHR) Project Grant #PT-153052 to PA. This study was also supported by funding from FRQS HIV/AIDS and Infectious Diseases Network, Quebec, Canada and The Canadian HIV Cure Enterprise Team Grant (CanCURE 1.0) funded by the CIHR in partnership with CANFAR and IAS (CanCURE 1.0; #HIG-133050 to PA and JPR).